Linkwitz-Riley 2nd order low-pass summed with a Linkwitz-Riley 4rt order High-pass filter @1kHz   7 comments

LR2lp@1kHz + LR4hp
first aligned using delay and after that aligned with a 1st order Allpass filter @1kHz at the outputs of a Apex Intelli-x 4in/8out processor (so no speakers in this 1 😉

001 LR4hpLR2lp 1k strt    002 LR4hpLR2lp 1k High solo   003 LR4hpLR2lp 1k low solo    004 LR4hpLR2lp 1k 90º phase difference at x-over    005 LR4hpLR2lp 1k 0.25ms delay on low    006 LR4hpLR2lp 1k sum low 0.25ms    007 LR4hpLR2lp 1k strt vs sum low 0.25ms    008 LR4hpLR2lp 1k sum low 0.25ms vs strt    009 LR4hpLR2lp 1k low solo 90º ap1 1k needed    0010 LR4hpLR2lp 1k ap1 1k on low    0011 LR4hpLR2lp 1k sum ap1 on low    0012 LR4hpLR2lp 1k ap1 vs 0.25ms    0013 LR4hpLR2lp 1k sum low 0.25ms vs ap1

7 responses to “Linkwitz-Riley 2nd order low-pass summed with a Linkwitz-Riley 4rt order High-pass filter @1kHz

Subscribe to comments with RSS.

  1. que puedo hacer para la combinacion de estos mismo filtros pero en una respuesta de cruse de 120

    hz cual seria el retraso en delay se lo agradezco de antemano

  2. I hope I have a correct translation: You want to know the delay needed if you cross @120Hz when using a 2nd order LR with a 4rt order LR filter? @Fernando Enrique Barros Sinisterra
    Out of a processor it’s pretty simple. T=1/F so T=1000ms/120Hz=8.33ms for a full cycle so 360º @ 120Hz. You’ll see 90º of phase difference which is a 1/4 cycle so 8.33ms/4=2.08ms. If you get to deal with a 2 way active loudspeaker the time needed might/will be more because of the physical displacement of both drivers. You’ll have to measure the loudspeaker response with a dual channel analyzer and interpet the data to get a correct delay value.

  3. Please ask questions in English. No Habla espanjol Sorry…….

  4. hello good night my question is what kind of DSP is the one that you are doing this analysis to run delays the phase response that I want to know if the DSP is in the market can get you really appreciate this information

  5. Thank you very much for the information

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit / Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit / Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit / Bijwerken )

Google+ photo

Je reageert onder je Google+ account. Log uit / Bijwerken )

Verbinden met %s

%d bloggers liken dit: